User Bias Removal in Fine Grained Sentiment Analysis

Rahul Wadbude*, Vivek Gupta*, Dheeraj Mekala, Janish Jindal, Harish Karnick

*Equal contribution

The Crux

Models

User Bias Removal - I (UBR-I)

User Bias Removal - II (UBR-II)

Results and Analysis

Classification Results

FOOD REVIEWS

Methods tf-idf LDA PV-DBOW
Majority Voting 1.535 1.535 1.535
User Mean 0.599 0.599 0.599
User Mode 2.557 2.557 2.557
Product Mean 1.140 1.140 1.140
Product Mode 1.746 1.746 1.746
Direct 0.888 1.494 1.06
Direct(bigram) 0.737 - -
UBR-I 0.546 0.597 0.56
UBR-I(bigram) 0.529 - -
UBR-II 0.669 0.778 0.71
UBR-II(bigram) 0.642 - -

ELECTRONICS REVIEWS

Methods tf-idf LDA PV-DBOW
Majority Voting 1.417 1.417 1.417
User Mean 1.022 1.022 1.022
User Mode 1.278 1.278 1.278
Product Mean 1.095 1.095 1.095
Product Mode 1.358 1.358 1.358
Direct 0.932 1.434 1.1
Direct(bigram) 0.805 - -
UBR-I 0.815 0.988 0.86
UBR-I(bigram) 0.763 - -
UBR-II 0.821 1.011 0.9
UBR-II(bigram) 0.761 - -

MOVIES & TV

Methods tf-idf LDA PV-DBOW
Majority Voting 1.494 1.494 1.494
User Mean 1.005 1.005 1.005
User Mode 1.258 1.258 1.258
Product Mean 1.066 1.066 1.066
Product Mode 1.347 1.347 1.347
Direct 0.936 1.273 1.08
Direct(bigram) 0.853 - -
UBR-I 0.818 0.959 0.87
UBR-I(bigram) 0.783 - -
UBR-II 0.814 0.982 0.87
UBR-II(bigram) 0.775 - -

Conclusion